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Data gaps: Economic progress

(Burke et al., Science 2021)
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Data gaps: Agricultural losses and gains

−→ 24% of countries have gone more than 15 years since their last
agricultural census

(Burke et al., Science 2021)
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Data gaps: Demographics

−→ 6% of countries have gone more than 15 years since their last
population census

(Burke et al., Science 2021)
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Data gaps: Biodiversity

−→ 48% of Asian, 35% of African and 21% of South American cells
have no digitally available species distribution data

(Meyer et al., Nat. Comms. 2015)
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Disproportionate data gaps in disadvantaged communities

Traditional data collection is expensive

• One Demographic and Health Survey in one country for one year:
$1.5-2 million USD (UN Sust. Dev., 2015)

• American Community Survey: >200 million USD annually (US Census
Bureau, 2021)

• US Agricultural Census: $46 million USD (USDA, 2022)

=⇒ Data gaps are largest where social and environmental
challenges are most pressing
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Data gaps impede social and environmental progress

“Key data are scarce, and often scarcest in places where they are most needed.”
—Burke et al., (Science, 2021)
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Satellite imagery: A global data solution?

There are over 700 Earth observation satellites in orbit.

Collectively, they retrieve >100TB of data per day.
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Satellite imagery: A global data solution?

(Burke et al., Science 2021)
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Satellite imagery: A global data solution?

Measuring irrigation and crop yields

Source: NASA
10



Satellite imagery: A global data solution?

Measuring urbanization and economic growth

Source: Medium
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Satellite imagery: A global data solution?

Measuring the extent of flooding

Source: GRiF 12



The challenge: A fire hose of unstructured information

How do we transform unstructured pixel-level data into
structured and useful information?
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Emerging solution: Deep learning

Question: How do we transform unstructured pixel-level data into
structured and useful information?

Modern answer: Deep learning (i.e., machine learning with artificial
neural networks)
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Satellite + ML measures of forest cover

(Hansen et al., 2013)
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Satellite + ML measures of wealth

(Chi et al., 2022)
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Satellite + ML measures of surface water

(Pekel et al., 2016)
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Each measurement is a major research enterprise

• Measuring Economic Growth from Outer Space
Henderson et al (AER, 2012)

• High resolution Global Maps of 21st Century Forest Cover Change
Hanson et al (Science, 2013)

• Combining satellite imagery and machine learning to predict poverty
Jean et al (Science, 2016)

• Mapping local variation in educational attainment across Africa
Graetz et al (Nature, 2018)

• Mapping child growth failure in Africa between 2000 and 2015
Osgood-Zimmerman et al (Nature, 2018)

• Using publicly available satellite imagery and deep learning to understand
economic well-being in Africa
Yeh et al (Nature Comm. 2020)
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Barriers to entry prevent widespread use of satellite imagery

Many people would like to combine Satellite Imagery with Machine
Learning (SIML) to solve their own problem in a specific setting
(domain).
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global challenges.
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Barriers to entry prevent widespread use of satellite imagery

Many people would like to combine Satellite Imagery with Machine
Learning (SIML) to solve their own problem in a specific setting
(domain).

Limited access to data, compute, skills, and resources prevents most
researchers and decision-makers from using SIML to tackle local and
global challenges.

These barriers imply that most remote sensing is conducted in
developed countries (Yu et al. 2014, Haack & Ryerson 2016)
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Can we make high performance SIML widely accessible?

We’re developing a system that:

1. Makes SIML easy (a regression) and cheap (can be done on a
personal computer)

2. Achieves performance competitive with leading models

3. Characterizes uncertainty and sensitivity of performance

−→ Problem setting: predicting properties of small regions (e.g.,
population density) using high-resolution satellite imagery

We hope this system will help empower diverse researchers to
leverage SIML to solve their own domain-specific challenges
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MOSAIKS: A generalizable pipeline to improve access

(“Multi-task Observation using Satellite Imagery and Kitchen Sinks”)

N geo-located 
images
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Needs a single summary of satellite imagery that can, without
modification, accurately predict many different ground conditions.
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Research question

Many unsupervised featurization approaches exist:

• GIST descriptor
(Oliva & Torralba, Int. J. Comput. Vis., 2001)

• Scale-invariant feature transform (SIFT) descriptor
(Lowe, Int. J. Comput. Vis., 2004)

• Histogram of oriented gradients (HOG) descriptor
(Dalal & Triggs, Int. Conf. Comput. Vis. Pattern Recognit., 2005)

• Autoencoder
(Hinton & Salakhutdinov, Science, 2006)

• Using pre-trained CNN as featurizer
(Gu et al., Applied Sciences, 2019)

• Tile2Vec
(Jean et al., AAAI, 2019)

Yet: few demonstrations that a single set of features can
performance as well as deep-learning methods across multiple tasks.
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(Hinton & Salakhutdinov, Science, 2006)

• Using pre-trained CNN as featurizer
(Gu et al., Applied Sciences, 2019)

• Tile2Vec
(Jean et al., AAAI, 2019)

Research Question
Can a single set of features achieve state of the art performance
across a variety of SIML tasks?
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Proposed solution: Random convolutional features

Method: Rahimi & Recht (2007, 2008a,b)
1. Key insight: Replacing costly optimization with randomization saves time and
maintains performance

2. How? Embed data into a high-dimensional randomly-generated feature space,
run linear regression

• Prior performance:
• classifying photographs (Coates & Ng 2012)
• encoding genetic sequences (Morrow et al. 2017)
• predicting solar flares (Jonas et al. 2018)

• Speed: replaces computationally expensive minimization with
randomization (Rahimi & Recht 2007, 2008a,b)

• Suitability: to the structures of satellite imagery
• Objects (e.g. tree, car) are generally within a few pixels.
• Images taken from a constant distance, and (often) orthorectified
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Intuition for random convolutional (kitchen sink) features
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Intuition for random convolutional (kitchen sink) features

Rahimi & Recht (2007, 2008a,b)
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Intuition for random convolutional (kitchen sink) features

What is a convolution?

A convolution is a mathematical operation comparing an image to a
“filter” (here, patch). Measures the similarity of image and filter.

1*1 + 0*2 + 1*3 +
0*4 + 1*5 + 1*6 +
1*7 + 0*8 + 1*9 = 31

source: analyticsindiamag.com 27



Intuition for random (kitchen sink) convolutional features

Rahimi & Recht (2007, 2008a,b)
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MOSAIKS: Applying RCF to satellite imagery

30



Roadmap: Rolf et al. (2021)

Can a single set of features achieve state of the art performance
across a variety of tasks?

1. Test generalization across tasks, and compare performance and
cost to existing SIML models

2. Evaluate model sensitivity, particularly under limited
data/storage conditions

3. Scale the analysis globally and across the outcomes in a
national survey

4. Demonstrate additional properties of MOSAIKS
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Experiment 1: test generalization across tasks

Step 1: Randomly sample 100,000 tiles (1km x 1km) from the U.S.

Step 2: Calculate features for each tile; Google Maps imagery (≈4m)

Step 3: Link features to labels within each tile:

Step 4: Train model using ridge regression, and test on holdout set
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Domain #1: FOREST COVER

Labels Predictions

1000

R2 = 0 .91
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merge treecover.dta x.dta, by(lat lon)
ridgereg y x if insample
predict y
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Domain #2: POPULATION DENSITY

Labels Predictions
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Domain #3: ELEVATION

Labels Predictions
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Domain #4: NIGHTTIME LUMINOSITY

Labels Predictions
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Domain #5: AVG HOUSE PRICES

Labels Predictions
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Domain #6: TOTAL ROAD LENGTH

Labels Predictions
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0 2500 5000 7500 10000 12500
km
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merge roadlength.dta x.dta, by(lat lon)
ridgereg y x if insample
predict y
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Domain #7: INCOME PER HOUSEHOLD

Labels Predictions

250k0

= 0 .45

40000 60000 80000 100000 120000
$ per household

R2

merge income.dta x.dta, by(lat lon)
ridgereg y x if insample
predict y
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Pre-computed features generalize across domains

Alternative patch sizes
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Competitive w/ deep convolutional neural network
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Competitive w/ deep convolutional neural network

• MOSAIKS is 250-10,000× faster to train
than CNN Table

• CNN on GPU: 7.9 hours
• MOSAIKS on GPU: 3 seconds
• MOSAIKS on laptop: 2 minutes

• MOSAIKS and CNN capture similar
information from imagery Scatter

• MOSAIKS also competitive w/ nightlights
transfer learning approach (e.g. Jean et
al. 2016, Head et al., 2017) DHS

37



Roadmap

Can a single set of features achieve state of the art performance
across a variety of tasks?

1. Test generalization across tasks, and compare performance and
cost to existing SIML models

2. Evaluate model sensitivity, particularly under limited
data/storage conditions

3. Scale the analysis globally and across the outcomes in a
national survey

4. Demonstrate additional properties of MOSAIKS
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Experiment 2: Evaluate model sensitivity

Consequential decisions likely to increasingly depend on (SI)ML
output, such as which families should receive financial assistance

• MOSAIKS’ computational efficiency enables characterization of performance and
uncertainty

• Retraining deep CNNs in the same way would be computationally prohibitive

Source: Aiken et al., 2022
39



Performance: spatial extrapolation

1. Partition sample in checkerboard

2. Train on white squares

3. Test on black squares

4. Jitter checkerboard location & repeat

5. Compare to spatial interpolation of ground-truth

(Reference: 8◦ × 8◦ = 888 km × 682 km (552 mi × 424 mi) at centroid)
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Spatial extrapolation out of sample

Forest cover (r2)
1

0
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Spatial extrapolation out of sample
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Spatial extrapolation out of sample
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Spatial extrapolation out of sample

MOSAIKS substantially outperforms spatial interpolation across all
tasks except for elevation and housing price.
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Model sensitivity: number of features & sample size

• A majority of the signal is recovered using K = 200 (vs. K = 8,192)
• Range: 55% (income) - 89% (nighttime lights)

• A majority of the signal is recovered using N = 500 (vs. N =
64,000) for some (but not all) outcomes

• Range: 26% (housing price) - 87% (forest cover)
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Roadmap

Can a single set of features achieve state of the art performance
across a variety of tasks?

1. Test generalization across tasks, and compare performance and
cost to existing SIML models

2. Evaluate model sensitivity, particularly under limited
data/storage conditions

3. Scale the analysis globally and across the outcomes in a
national survey

4. Demonstrate additional properties of MOSAIKS
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Performance at global scale
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Performance predicting variables from the 2015 ACS
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Pct. HH income to rent
Total housing units

Pct. HHs vacant
Pct. below poverty line

Pct. HHs w/ food stamps
Commute time

Pct. adults w/ bach. deg.
Income per capita
Rooms per house

Income per HH 
Housing value

Building age

R2

(In baseline
experiment)

46



Roadmap

Can a single set of features achieve state of the art performance
across a variety of tasks?

1. Test generalization across tasks, and compare performance and
cost to existing SIML models

2. Evaluate model sensitivity, particularly under limited
data/storage conditions

3. Scale the analysis globally and across the outcomes in a
national survey

4. Demonstrate additional properties of MOSAIKS
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Additional property: Label super-resolution

Goal: Predict at finer resolution than existing training data.

Step 1: Train using 1km by 1km labels
Step 2: Predict at finer resolution
Step 3: Evaluate performance using fine resolution labels
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Additional property: Label super-resolution

Goal: Predict at finer resolution than existing training data.
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Additional property: Feature combinations

Goal: Combine features from multiple sources into the same model

y = RCFβ + NLγ + ε

Note: Predicting household outcomes from Demographic & Health Surveys using
MOSAIKS vs. transfer learning. Similar results for Haiti and Nepal. 50



Additional property: Feature combinations

Goal: Combine features from multiple sources into the same model

y = RCFβ + CNNα+ ε

MOSAIKS ResNet-18 Hybrid
Task R2 R2 R2

Forest cover 0.89 0.94 0.94
Elevation 0.68 0.80 0.81
Population density 0.71 0.81 0.81
Nighttime lights 0.85 0.89 0.90
Income 0.45 0.47 0.51
Road length 0.53 0.58 0.59
Housing price 0.53 0.49 0.58
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Limitations

Satellite imagery + machine learning is a powerful but inherently
limited combination.

• Machine learning predictions are only as good as the ground
truth data we train on

=⇒ continued collection of traditional datasets is critical (Lobell
et al., 2020)

• Algorithmic bias is insufficiently studied in the imagery domain
=⇒ which populations are we misrepresenting? (Chi et al.,
2022)
=⇒ what effect to systematic errors have on downstream
research and policy decisions? (Proctor, Carleton and Sum, 2023;
Angelopoulos et al., 2023)

• Privacy and ethical concerns grow as imagery and algorithmic
precision improve
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Conclusions

• Satellite imagery + machine learning hold substantial promise
for filling critical data gaps and supporting sustainable
development

• But this potential has been limited by the costs of modern deep
learning approaches

• MOSAIKS can make this technology accessible while unlocking
more information from each image

• Many maps can be predicted using a single featurization of
imagery, at low computational cost

• API allows you to generate your own imagery-based predictions!
• Code, input data, and output data are publicly hosted

What questions can satellite imagery + machine learning
help you solve?
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Performance by patch size
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